On the Subject of 27,644,437

A scientific calculator is recommended! Please use a scientific calculator!
Use a scientific calculator!

The module contains:

  • A circle of 13 white LEDs.
    • Ordered 0-12 clockwise from the top.
  • A lower screen cycling through sets 0-12.
  • An upper screen displaying a Base-36 number. (100000-ZZZZZZ)

A partition is a particular combination of subsets (groups) that can be made with a set of n elements. There are 27,644,437 possible partitions in a set of 13 elements, the LEDs being the elements, and the Base-36 number being the ID to the partition. Clicking the LEDs will toggle their presence in the selected subset, those being the letters A-M.

Partitions can be displayed in two ways:

  • Set Partition: Shows which specific elements are in each subset:
    • [[0], [2], [7], [1,8], [3,12], [5,10,11], [4,6,9]]
  • Integer Partition: Shows how many elements are in each subset:
    • [1, 1, 1, 2, 2, 3, 3]

Locate and submit the partition pointed to by Base-36 number in order to solve the module. Subsets are inputted in the order they were discovered using the Instruction Table on the next page.

Variables

The following is a list of variables that will appear regularly throughout the instructions. Each will always equal a numerical digit.

n Element amount.
Starts at 13, n - r1 for each subset found.
r Subset length
r1 = 1 = [x] r2 = 2 = [x,x]
j Amount of a specific subset.
j1 = 2 = [x], [x] j2 = 3 = [x,x], [x,x], [x,x]

Instruction Table

1. Convert the base of the module’s serial number, becoming the “Base Index”. See Converting Bases on Page 3. Perform the following operation: Base Index % 27,644,437 Locate the cell in Appendix B on page 5 that matches with the Base Index.
2. Take the PTF and IPC of the cell found in Appendix B, then plug into the formula. Base Index - ((PTF + 1) - IPC)
= Index A1
3. Locate Subset N, the subset with the smallest r that has not been affixed a value.
*If multiple subsets of r = 1 exist (j > 1), Subset N merges them (r = j1).
Use the current IPC and the SnC of the current Subset N.

IPC (Integer Partition Combos):

n! /
( r1! × r2! × r3!… × j1! × j2! × j3!… )

SnC (Subset N Combos):

n! /
( r! × (n - r)! )

CPSn (Combos per single value of Subset N):


IPC / SnC =
CPSn
4. Find SnV; save it as a rounded down whole number AND its decimal form.

Subset N Value(s):

Index A1 / CPSn = SnV
Count up to the SnVth (whole) combination of Subset N. See Counting Subset Values on Page 3.

Save Subset N as part of the final answer (if r = j1, unmerge elements).
Remove Subset N’s r from the integer partition.
5. Recalculate IPC with Subset N removed.

n = n - (Subset N's r)
j1 = j1 - 1, j != 0
Separate two values of SnV:
It’s whole number form AND decimal form.

(decimal(SnV) - whole(SnV)) × IPC = Index A1
Index A1 replaces Index A2
6. If Index A2 = 0, continue from here. If not, repeat Steps 3-5 until it does. If one subset is left, any unset elements may be added to it. This also applies if the rest of the subsets are subsets of r = 1. If multiple subsets are unset, use the first available combination for each subset in order of whichever subset would be Subset N next. Once the correct partition is inputted, the module will solve.

Converting Bases

To convert from Base-36 to Base-10, take each letter’s alphanumeric value and add 9 to it. Then starting from the leftmost number, multiply each number by 36n. n in this case starts at 5, and decreases incrementally by one for the next number. Finally, add each product.

ABZ129 ⇒ 10, 11, 35, 1, 2, 9
(10 × 365) + (11 × 364) + (35 × 363) + (1 × 362) + (2 × 361) + (9 × 360)
(10 × 60,466,176) + (11 × 1,679,616) + (35 × 46,656) + (1 × 1,296) + (2 × 36) + (9 × 1)
= 624,771,873

Counting Subset Values

For a subset of r = 2, its combinations are ordered like so. Subsets with a higher r are ordered similarly:
SnV = 0123
[0, 1], [0, 2], [0, 3], [0, 4], …, [0, 9], [0, 10], [0, 11], [0, 12],
SnV = 121314
[1, 2], [1, 3], [1, 4], …, [1, 9], [1, 10], [1, 11], [1, 12],
SnV = 2324
[2, 3], [2, 4], …, [2, 10], [2, 11], [2, 12], …

If a subset of r = 2 is given the values [4, 9], later subsets can not use either of the elements, as they are already fixed to a subset. Select the next available element(s).

If SnV is too large a number to count quickly, refer to Appendix A on the next page for a strategy that resembles C# code.

Appendix A

int v = the # of already set elements;
int x = 0; int y = 0; int w = 0;
for (int i = 0; until Subset N is solved; i + 1) {
x = value in cell[column r, row v];
y + x;
if (y > SnV) {
SnV = SnV - (y - x);
While avoiding already set elements:
SubsetN[i] = value in cell[ row w, the leftmost column ];
v = v + SubsetN[i] + 1
r - 1; w = 0; }
else if (y = SnV) {
for (int i2 = 1; until Subset N is solved; i2++;) {
SubsetN[i] = value in cell[ row w + i2, the leftmost column );
i + 1; }
w + 1; }

If SnV becomes low enough, you may go back to counting Subset N incrementally.

12345678910111213
01126622049579292479249522066121
11115516533046246233016555111
21104512021025221012045101
3193684126126843691
418285670562881
5172135352171
61615201561
715101051
814641
91331
10121
1111
121

Appendix B

In reading order, the list displays every possible integer partition that can be made in a list of 13 elements.

PTF = Partitions Thus Far (the index for each int. partition)
IPC = Integer Partition Combos (# of set partitions in an int. partition)

The Base Index matches with a cell if BOTH:

  • Base Index is greater than the previous cell’s PTF
  • Base Index is less than or equal to the selected cell’s PTF
Shade ~Amount If a PTF surpasses a multiple(s) of one million partitions, the cell will be shaded for the sake of convenience.

Format of cells:
r0, r1, r2, ...
[IPC]
PTF
LightDark Gray 1,000,000
DarkLight Gray 2,000,000
BlackWhite 3,000,000
13
[1]
0
12, 1
[13]
13
11, 2
[78]
91
11, 1, 1
[78]
169
10, 3
[286]
455
10, 2, 1
[858]
1313
10, 1, 1, 1
[286]
1599
9, 4
[715]
2314
9, 3, 1
[2860]
5174
9, 2, 2
[2145]
7319
9, 2, 1, 1
[4290]
11609
9, 1, 1, 1, 1
[715]
12324
8, 5
[1287]
13611
8, 4, 1
[6435]
20046
8, 3, 2
[12870]
32916
8, 3, 1, 1
[12870]
45786
8, 2, 2, 1
[19305]
65091
8, 2, 1, 1, 1
[12870]
77961
8, 1, 1, 1, 1, 1
[1287]
79248
7, 6
[1716]
80964
7, 5, 1
[10296]
91261
7, 4, 2
[25740]
117001
7, 4, 1, 1
[25740]
142741
7, 3, 3
[17160]
159901
7, 3, 2, 1
[102960]
262861
7, 3, 1, 1, 1
[34320]
297180
7, 2, 2, 2
[25740]
322920
7, 2, 2, 1, 1
[77220]
400140
7, 2, 1, 1, 1, 1
[25740]
425880
7, 1, 1, 1, 1, 1, 1
[1716]
427596
6, 6, 1
[6006]
433602
6, 5, 2
[36036]
469638
6, 5, 1, 1
[36036]
505674
6, 4, 3
[60060]
565734
6, 4, 2, 1
[180180]
745914
6, 4, 1, 1, 1
[60060]
805974
6, 3, 3, 1
[120120]
926094
6, 3, 2, 2
[180180]
1106274
6, 3, 2, 1, 1
[360360]
1466634
6, 3, 1, 1, 1, 1
[60060]
1526694
6, 2, 2, 2, 1
[180180]
1706874
6, 2, 2, 1, 1, 1
[180180]
1887054
6, 2, 1, 1, 1, 1, 1
[36036]
1923090
6, 1, 1, 1, 1, 1, 1, 1
[1716]
1924806
5, 5, 3
[36036]
1960842
5, 5, 2, 1
[108108]
2068950
5, 5, 1, 1, 1
[36036]
2104986
5, 4, 4
[45045]
2150031
5, 4, 3, 1
[360360]
2510391
5, 4, 2, 2
[270270]
2780661
5, 4, 2, 1, 1
[540540]
3321201
5, 4, 1, 1, 1, 1
[90090]
3411291
5, 3, 3, 2
[360360]
3771651
5, 3, 3, 1, 1
[360360]
4132011
5, 3, 2, 2, 1
[1081080]
5213091
5, 3, 2, 1, 1, 1
[720720]
5933811
5, 3, 1, 1, 1, 1, 1
[72072]
6005883
5, 2, 2, 2, 2
[135135]
6141018
5, 2, 2, 2, 1, 1
[540540]
6681558
5, 2, 2, 1, 1, 1, 1
[270270]
6951828
5, 2, 1, 1, 1, 1, 1, 1
[36036]
6987864
5, 1, 1, 1, 1, 1, 1, 1, 1
[1287]
6989151
4, 4, 4, 1
[75075]
7064226
4, 4, 3, 2
[450450]
7514676
4, 4, 3, 1, 1
[450450]
7965126
4, 4, 2, 2, 1
[675675]
8640801
4, 4, 2, 1, 1, 1
[450450]
9091251
4, 4, 1, 1, 1, 1, 1
[45045]
9136296
4, 3, 3, 3
[200200]
9336496
4, 3, 3, 2, 1
[1801800]
11138296
4, 3, 3, 1, 1, 1
[600600]
11738896
4, 3, 2, 2, 2
[900900]
12639796
4, 3, 2, 2, 1, 1
[2702700]
15342496
4, 3, 2, 1, 1, 1, 1
[900900]
16243396
4, 3, 1, 1, 1, 1, 1, 1
[60060]
16303456
4, 2, 2, 2, 2, 1
[675675]
16979131
4, 2, 2, 2, 1, 1, 1
[900900]
17880031
4, 2, 2, 1, 1, 1, 1, 1
[270270]
18150301
4, 2, 1, 1, 1, 1, 1, 1, 1
[25740]
18176041
4, 1, 1, 1, 1, 1, 1, 1, 1, 1
[715]
18176756
3, 3, 3, 3, 1
[200200]
18376956
3, 3, 3, 2, 2
[600600]
18977556
3, 3, 3, 2, 1, 1
[1201200]
20178756
3, 3, 3, 1, 1, 1, 1
[200200]
20378956
3, 3, 2, 2, 2, 1
[1801800]
22180756
3, 3, 2, 2, 1, 1, 1
[1801800]
23982556
3, 3, 2, 1, 1, 1, 1, 1
[360360]
24342916
3, 3, 1, 1, 1, 1, 1, 1, 1
[17160]
24360076
3, 2, 2, 2, 2, 2
[270270]
24630346
3, 2, 2, 2, 2, 1, 1
[1351350]
25981696
3, 2, 2, 2, 1, 1, 1, 1
[900900]
26882596
3, 2, 2, 1, 1, 1, 1, 1, 1
[180180]
27062776
3, 2, 1, 1, 1, 1, 1, 1, 1, 1
[12870]
27075646
3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
[286]
27075932
2, 2, 2, 2, 2, 2, 1
[135135]
27211067
2, 2, 2, 2, 2, 1, 1, 1
[270270]
27481337
2, 2, 2, 2, 1, 1, 1, 1, 1
[135135]
27616472
2, 2, 2, 1, 1, 1, 1, 1, 1, 1
[25740]
27642212
2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1
[2145]
27644357
2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
[78]
27644435
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
[1]
27644436