On the Subject of OmegaForget

For every stage this module will display 3 new sets of information.

  • 1) The base 36 & base 64 screen at the top.
  • 2) the 2 colored LEDs on the top left and top right of the module.
  • 3) The “3D” cube in the middle performing a rotation.

If an operator at any point yields a value greater than 999 or less than -999, add or subtract 1000 until it is within that range.

Section 1: Determining The Operation

In each stage, read the rotation of the flat cube, and use the table below to determine what operation to use. (Remember to modulo 5 the stage number.)

  • I is the display, converted from base36 to base8 (Modulo 1000)
  • D is the display, converted from base64 to 10. (Modulo 1000)
  • When the stage is a multiple of 5, the stored values reset.
  • % is a symbol for the Modulo operation.
  • The E value is calculated via the LEDs on the second page. (PLEASE ONLY CALCULATE E IF YOUR EQUATION NEEDS IT)

Input the displayed characters from the module in the text field to convert them to the D & E values. Case does *NOT* matter


Stage 0 (J) Stage 1 (K) Stage 2 (L) Stage 3 (M) Stage 4 (N)
XY I+2*E J+D-I I+J+K L-K-J+I I-M+L-K+J
XZ 2*I+E I-J+D I-K 3*I-4*D 999-4*I+M
YZ 999-2*I J-I J+K-I I+E-D 333-L+I-E
YX I-(99-E) E+D+I-J I*(J%6+1) L-I*(I%4+1) J+15-(I-I%2)/2
ZX E-I 999-I-J D-(I+E)+K K+(I+I%2)/2 I+K-M
ZY (I-I%2)/2+D 2*D-I+J 3*D-K+I -L-I+D 5*I-L+3*D-E

Go to page 4 for a reference on what the characters on the display look like.

Section 2: Calculating LED Values

Subsection 2.1: Initial Values

In the table, use the left LED’s color for the column and the right LED’s color for the row to find your initial LED value, C.

K is black, and S is rose.

A K B C G J L M O R S V W Y
A 3718075824729501547388136483
K 6648501941228478903403632914
B 9523579836758142043207916011
C 4786730016469759268177396592
G 7024533027068544693876496299
J 2863145290150287297145519437
L 0833612022341189651267047891
M 4082982595105669447996094031
O 4703669335854391185578140560
R 7495216802269042171380759953
S 3217567491587092853064728913
V 4193358811012365490043638712
W 3471500639273392035277774910
Y 4718948362148609541789241608

Subsection 2.2: Final LED Values

Take the stage number on the module mod 5 to get your equation. Use that equation with the initial LED value C and sometimes I to calculate E. Mod 100 after doing the equation.

Stage mod 5 ->01234
E = I-C 2*C+7 ((C+C%2)+(I+I%2))/2 3*I-2*C-42 75-C+2*I

Section 3: Determining Button Presses

Take your final value for this stage mod100 and find it in this table. This will be used to determine what button to press and when. The column is for the first digit, row for the second.

0-1-2-3-4-5-6-7-8-9-
-0 43885925460791706314
-1 31520094381127627783
-2 86351916325574800467
-3 61977299584718307851
-4 02154140823365604408
-5 17685728229323240310
-6 79266442733950208756
-7 49760153483792066929
-8 21368475347154858945
-9 98960590669512138109

Look at the buttons on the module. Follow the rules for the conditions that apply in the “If...” section and apply the following “Then...” rules to the small table under this paragraph to get your finalized sequence.

This final sequence will turn a 2-digit number into a number and a button. in small table below “74” would become R4 i.e press the button at the bottom left (0 indexed) The buttons are ordered from the top left to the bottom left then on the other side top right to bottom right.

Number0123456789
ColorKBCGMOPRWY

If... Then...
W & K adjacent? Reverse the sequence
R & C opposite? Swap R and C
G & M opposite? Swap G and M
B & Y opposite? Swap B and Y
One button separates O and P Swap the 1st and 10th colors as shown on the module
R & B adjacent? Cycle the sequence two to the right
Two buttons separate K and W Swap the 2nd and 9th colors as shown on the module
Y & G adjacent? Cycle the sequence three to the left

Section ?: Display Identification Reference


On the Subject of The five stages of grief.

My reaction to that information:

Make sure you read all three rotations and calculate them in order of appearance. There is a brief pause in between rotations.

  • N is the current step of the sequence. (Will always be 1, 2 or 3)
  • In step 1 of each stage, X=I. In steps 2 & 3, X is the previous calculated value.
  • If you need “jN” then find the Nth calculated value in stage “j”

Input the displayed characters from the module in the text field to convert them to the D & E values. Case does *NOT* matter


Stage 0 (j) Stage 1 (k) Stage 2 (l) Stage 3 (m) Stage 4 (n)
XY X+2*E jN+D-X X+jN+kN lN-kN-jN+X X-mN+lN-kN+jN
XZ X+I+E X-I-jN N*X-k1 3*X-4*D+5*N 999-4*X-9*N+m3
YZ 999-2*X j3-X j3+k3-X N*(X+E-D) 333-l2+X-E
YX I-(99-E)+X E+D+X-j2 X*(jN%6+1) l2-X*(I%4+1) j3+15*N-(X-X%2)/2
ZX E-X 999-X-j1 D-(X+E)+k1 kN+(X+X % 2)/2 I-2*N-k1+(X-5*N)
ZY (X-X%2)/2+D 2*D-X+jN 3*D-kN+X N-l3-X+D 5*X-10*N+3*D-E

0-1-2-3-4-5-6-7-8-9-
-0 43885925460791706314
-1 31520094381127627783
-2 86351916325574800467
-3 61977299584718307851
-4 02154140823365604408
-5 17685728229323240310
-6 79266442733950208756
-7 49760153483792066929
-8 21368475347154858945
-9 98960590669512138109
A K B C G J L M O R S V W Y
A 3718075824729501547388136483
K 6648501941228478903403632914
B 9523579836758142043207916011
C 4786730016469759268177396592
G 7024533027068544693876496299
J 2863145290150287297145519437
L 0833612022341189651267047891
M 4082982595105669447996094031
O 4703669335854391185578140560
R 7495216802269042171380759953
S 3217567491587092853064728913
V 4193358811012365490043638712
W 3471500639273392035277774910
Y 4718948362148609541789241608

Stage mod 5 ->01234
E = I-C 2*C+7 ((C+C%2)+(I+I%2))/2 3*I-2*C-42 75-C+2*I