On the Subject of Polyhedral Mazes

What’s a pentecostal hexadecimal contradiction?

Identify the polyhedron[1] on the module and find its corresponding net[2] below.

The number in the bottom-left of the module shows the current face on the polyhedron. The number in the bottom-right shows the destination face that must be reached to defuse the module.

Navigate to the destination face without crossing any of the thick lines. These are not visible on the module. The letters and the curved lines indicate faces that are connected even though they are not adjacent in the net.

4-Truncated Deltoidal Icositetrahedron 0 2 30 8 26 5 34 1 38 12 24 6 7 35 9 4 31 3 28 13 14 32 20 40 19 29 10 11 39 25 16 A A 15 27 18 22 41 23 36 37 F F C C 33 21 H H G G 17 E E D D B B ChamferedDodecahedron 0 2 34 8 26 38 1 30 12 24 6 7 39 9 5 4 28 14 36 20 32 10 11 3 31 13 27 18 29 25 35 40 23 19 22 33 21 D D C C 17 16 A A 15 F F 41 B B G G 37 E E Chamfered Icosahedron 0 20 30 19 32 42 12 18 46 13 38 22 40 21 23 47 9 3 16 11 31 10 E E 43 15 28 27 7 36 37 33 5 29 6 24 48 8 4 45 26 17 F F 41 14 35 25 D D H H G G 39 44 1 A A C C B B 49 I I 34 2
Deltoidal Hexecontahedron 0 52 51 14 53 50 1 13 54 59 38 58 27 55 39 26 28 56 35 25 8 16 57 29 24 9 15 36 17 D D 7 23 20 37 22 3 21 45 2 43 4 6 49 46 44 42 10 5 48 40 41 11 47 18 33 32 31 12 A A 19 E E 30 34 B B C C Disdyakis Dodecahedron 0 7 23 1 6 16 22 38 2 5 41 17 21 39 37 4 42 40 18 20 32 3 31 47 19 15 33 30 24 8 14 34 29 43 25 35 28 44 26 A A 36 27 11 45 10 12 46 9 B B 13 C C Joined SnubCube (laevo) 0 3 2 32 1 31 48 30 53 9 8 24 58 20 10 11 26 44 23 34 21 28 56 42 33 35 22 27 52 29 19 50 12 43 49 C C 57 4 17 16 25 18 38 13 54 45 7 40 37 36 55 B B 14 15 46 41 47 59 A A 6 39 D D 5 G G F F 51 E E Joined Rhombicuboctahedron 0 26 36 25 19 24 11 16 10 28 8 17 9 33 29 27 32 41 18 34 4 7 3 40 37 6 2 39 47 1 44 30 13 38 43 20 31 42 14 B B 23 21 15 22 46 C C 12 A A 45 35 5 Pentagonal Hexecontahedron (laevo) 0 1 52 4 2 51 3 24 25 26 50 43 29 27 55 54 44 23 42 20 8 59 37 40 22 10 21 9 58 28 7 38 41 45 5 57 6 13 11 46 49 15 56 D D 14 53 12 B B 47 H H G G 32 48 16 31 33 19 J J I I 34 18 30 17 36 E E F F 35 39 A A C C CanonicalRectifiedSnub Cube(laevo) 0 24 46 30 1 16 17 38 54 34 50 59 52 28 11 8 21 23 43 26 42 48 58 29 51 35 10 9 G G 19 20 55 39 47 37 61 3 I I 18 2 31 25 53 6 H H 7 49 F F 41 22 E E 14 60 33 27 57 15 13 45 36 C C 5 B B 40 56 12 32 D D 44 4 A A
Orthokis Propello Cube 0 8 32 1 7 6 35 33 4 40 10 20 45 34 3 5 43 44 11 19 26 18 46 9 17 41 31 12 47 21 28 22 27 36 16 30 15 14 2 13 29 D D 39 24 42 38 37 A A B B 23 C C 25 PentakisDodecahedron 0 10 1 11 52 2 12 51 53 26 3 31 50 27 14 54 25 24 4 55 28 13 38 29 23 20 43 59 56 39 37 21 42 44 58 57 35 7 22 41 16 30 36 6 8 46 40 32 34 17 5 47 45 33 18 9 15 49 19 48 A A RectifiedRhombicuboctahedron 0 22 46 30 3 8 32 33 23 13 48 16 40 18 5 49 39 41 38 17 11 44 24 21 28 1 7 45 2 6 C C 25 20 29 26 27 19 A A 15 43 10 42 14 B B 36 E E 34 D D 4 F F 12 35 37 31 G G 47 H H 9 I I Triakis Icosahedron 0 2 38 1 6 36 48 8 7 14 37 50 49 42 56 12 26 18 30 44 13 25 19 43 16 24 31 22 20 27 15 17 21 54 29 41 45 23 59 46 39 51 57 5 40 53 52 10 58 3 4 B B 32 33 11 35 9 C C 34 55 47 28 A A Rhombicosidodecahedron 0 12 40 32 16 4 54 42 50 52 10 58 20 36 14 22 28 33 25 24 6 44 2 56 46 9 8 59 26 18 34 41 30 31 23 38 21 11 B B 60 53 51 57 47 5 55 39 27 35 15 D D 37 13 29 48 49 61 45 43 1 17 7 A A 19 E E 3 C C F F