On the Subject of Swiftly Subduing Silly Slots
Use the table on the left to convert the symbols to letters A–D and the colors to numbers 1–3.
Find the three colors (row), the first two symbols (columns) and the third symbol (inside the cell).
K = keep, P = pull; rest is a condition on keep.
n^3 = nth slot 2 stages ago was 3.
<D, <2F = previous stage had any D/2F.
«1D, «3F = any earlier stage had a 1D/3F.
& = logical and.
| Sassy | Silly | Soggy | Sally | Simon | Sausage | Steven | |||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | Blue | 1 | Blue | 1 | Green | 1 | Red | 1 | Red | 1 | Red | 1 | Green |
| 2 | Red | 2 | Green | 2 | Blue | 2 | Blue | 2 | Green | 2 | Blue | 2 | Red |
| 3 | Green | 3 | Red | 3 | Red | 3 | Green | 3 | Blue | 3 | Green | 3 | Blue |
| A | Cherry | A | Coin | A | Coin | A | Grape | A | Bomb | A | Grape | A | Cherry |
| S | Grape | S | Bomb | S | Cherry | S | Cherry | S | Grape | S | Bomb | S | Bomb |
| D | Bomb | D | Grape | D | Bomb | D | Bomb | D | Cherry | D | Coin | D | Coin |
| F | Coin | F | Cherry | F | Grape | F | Coin | F | Coin | F | Cherry | F | Grape |
| AA | AS | AD | AF | SA | SS | SD | SF | |
|---|---|---|---|---|---|---|---|---|
| 111 | A=«3F D=P K | A=K 1^3 | P | A=K 1^3 | A=K D=P 2^3 | A=3^3 S=<2F&«3F <2F | A=P <2F | A=3^3 <2F |
| 112 | S=«1D D=P K | S=1^3&«1D D=P 1^3 | P | S=1^3&«1D D=P 1^3 | S=2^3&«1D D=P 2^3 | S=«1D D=P K | S=«1D F=K P | S=«1D D=P K |
| 113 | D=P <D | 1^3&<D | P | 1^3&<D | D=P 2^3&<D | <D | <D | <D |
| 121 | A=K D=P 1^3 | A=«1D 1^3&«1D | P | A=K 1^3 | A=3^3 D=P K | A=3^3&«1D «1D | P | A=3^3 K |
| 122 | P | P | P | F=1^3 P | P | P | P | F=K P |
| 123 | D=P 1^3&<D | 1^3&<D&«1D | P | 1^3&<D | D=P <D | <D&«1D | P | <D |
| 131 | A=<D 1^3&<D | A=<D 1^3&<D | P | A=<D 1^3&<D | A=3^3&<D <D | A=3^3&<D <D | A=P <D | A=3^3&<D <D |
| 132 | S=1^3&<D&«1D D=P 1^3&<D | S=1^3&<D&«1D D=P 1^3&<D | P | S=1^3&<D&«1D D=P 1^3&<D | S=<D&«1D D=P <D | S=<D&«1D D=P <D | S=<D&«1D F=<D P | S=<D&«1D D=P <D |
| 133 | 1^3 | 1^3 | P | F=P 1^3 | K | K | K | F=P K |
| 211 | A=K D=P 2^3 | A=3^3 K | P | A=3^3 K | A=«1D D=P 2^3&«1D | A=3^3&«1D «1D | A=P «1D | A=3^3&«1D «1D |
| 212 | P | P | P | P | P | P | P | P |
| 213 | D=P 2^3&<D | <D | P | <D | D=P 2^3&<D&«1D | <D&«1D | <D&«1D | <D&«1D |
| 221 | P | P | P | P | P | P | P | P |
| 222 | A=«3F S=«1D D=P F=K | D=P «1D | P | S=«1D D=P K | D=P «1D | A=«1D F=<2F&«1D P | D=<2F&«1D P | A=«1D D=P <2F&«1D |
| 223 | P | P | P | P | P | P | P | P |
| 231 | A=3^3&<D <D | A=3^3&<D <D | P | A=3^3&<D <D | A=3^3&<D&«1D <D&«1D | A=3^3&<D&«1D <D&«1D | A=P <D&«1D | A=3^3&<D&«1D <D&«1D |
| 232 | P | P | P | P | P | P | P | P |
| 233 | K | K | P | F=P K | «1D | S=P «1D | «1D | F=P «1D |
| 311 | A=<D D=P 2^3&<D | A=3^3&<D <D | A=P <D | A=3^3&<D <D | A=<D D=P 2^3&<D | A=3^3&<D <D | A=P <D | A=3^3&<D <D |
| 312 | S=2^3&<D&«1D D=P 2^3&<D | S=<D&«1D D=P <D | S=<D&«1D F=<D P | S=<D&«1D D=P <D | S=2^3&<D&«1D D=P 2^3&<D | S=<D&«1D D=P <D | S=<D&«1D F=<D P | S=<D&«1D D=P <D |
| 313 | D=P 2^3 | K | K | K | D=P 2^3 | K | K | K |
| 321 | A=3^3&<D D=P <D | A=3^3&<D&«1D <D&«1D | P | A=3^3&<D <D | A=3^3&<D D=P <D | A=3^3&<D&«1D <D&«1D | P | A=3^3&<D <D |
| 322 | P | P | P | F=<D P | P | P | P | F=<D P |
| 323 | D=P K | «1D | P | K | D=P K | S=P «1D | P | K |
| 331 | A=3^3 K | A=3^3 K | A=P K | A=3^3 K | A=3^3 K | A=3^3 K | A=P K | A=3^3 K |
| 332 | S=«1D D=P K | S=«1D D=P K | S=«1D F=K P | S=«1D D=P K | S=«1D D=P K | S=P D=P K | S=«1D F=K P | S=«1D D=P K |
| 333 | A=«3F K | K | K | F=P K | K | A=K S=P <2F | A=K <2F | A=K F=P <2F |