On the Subject of Swiftly Subduing Silly Slots

Use the table on the left to convert the symbols to letters A–D and the colors to numbers 1–3.

Find the three colors (row), the first two symbols (columns) and the third symbol (inside the cell).

K = keep, P = pull; rest is a condition on keep.

n^3 = nth slot 2 stages ago was 3.

<D, <2F = previous stage had any D/2F.

«1D, «3F = any earlier stage had a 1D/3F.

& = logical and.

SassySillySoggySallySimonSausageSteven
1Blue 1Blue 1Green 1Red 1Red 1Red 1Green
2Red 2Green 2Blue 2Blue 2Green 2Blue 2Red
3Green 3Red 3Red 3Green 3Blue 3Green 3Blue
ACherryACoin ACoin AGrape ABomb AGrape ACherry
SGrape SBomb SCherrySCherrySGrape SBomb SBomb
DBomb DGrape DBomb DBomb DCherryDCoin DCoin
FCoin FCherryFGrape FCoin FCoin FCherryFGrape
AAASADAFSASSSDSF
111A=«3F
D=P
K
A=K
1^3
PA=K
1^3
A=K
D=P
2^3
A=3^3
S=<2F&«3F
<2F
A=P
<2F
A=3^3
<2F
112S=«1D
D=P
K
S=1^3&«1D
D=P
1^3
PS=1^3&«1D
D=P
1^3
S=2^3&«1D
D=P
2^3
S=«1D
D=P
K
S=«1D
F=K
P
S=«1D
D=P
K
113D=P
<D
1^3&<DP1^3&<DD=P
2^3&<D
<D<D<D
121A=K
D=P
1^3
A=«1D
1^3&«1D
PA=K
1^3
A=3^3
D=P
K
A=3^3&«1D
«1D
PA=3^3
K
122PPPF=1^3
P
PPPF=K
P
123D=P
1^3&<D
1^3&<D&«1DP1^3&<DD=P
<D
<D&«1DP<D
131A=<D
1^3&<D
A=<D
1^3&<D
PA=<D
1^3&<D
A=3^3&<D
<D
A=3^3&<D
<D
A=P
<D
A=3^3&<D
<D
132S=1^3&<D&«1D
D=P
1^3&<D
S=1^3&<D&«1D
D=P
1^3&<D
PS=1^3&<D&«1D
D=P
1^3&<D
S=<D&«1D
D=P
<D
S=<D&«1D
D=P
<D
S=<D&«1D
F=<D
P
S=<D&«1D
D=P
<D
1331^31^3PF=P
1^3
KKKF=P
K
211A=K
D=P
2^3
A=3^3
K
PA=3^3
K
A=«1D
D=P
2^3&«1D
A=3^3&«1D
«1D
A=P
«1D
A=3^3&«1D
«1D
212PPPPPPPP
213D=P
2^3&<D
<DP<DD=P
2^3&<D&«1D
<D&«1D<D&«1D<D&«1D
221PPPPPPPP
222A=«3F
S=«1D
D=P
F=K
D=P
«1D
PS=«1D
D=P
K
D=P
«1D
A=«1D
F=<2F&«1D
P
D=<2F&«1D
P
A=«1D
D=P
<2F&«1D
223PPPPPPPP
231A=3^3&<D
<D
A=3^3&<D
<D
PA=3^3&<D
<D
A=3^3&<D&«1D
<D&«1D
A=3^3&<D&«1D
<D&«1D
A=P
<D&«1D
A=3^3&<D&«1D
<D&«1D
232PPPPPPPP
233KKPF=P
K
«1DS=P
«1D
«1DF=P
«1D
311A=<D
D=P
2^3&<D
A=3^3&<D
<D
A=P
<D
A=3^3&<D
<D
A=<D
D=P
2^3&<D
A=3^3&<D
<D
A=P
<D
A=3^3&<D
<D
312S=2^3&<D&«1D
D=P
2^3&<D
S=<D&«1D
D=P
<D
S=<D&«1D
F=<D
P
S=<D&«1D
D=P
<D
S=2^3&<D&«1D
D=P
2^3&<D
S=<D&«1D
D=P
<D
S=<D&«1D
F=<D
P
S=<D&«1D
D=P
<D
313D=P
2^3
KKKD=P
2^3
KKK
321A=3^3&<D
D=P
<D
A=3^3&<D&«1D
<D&«1D
PA=3^3&<D
<D
A=3^3&<D
D=P
<D
A=3^3&<D&«1D
<D&«1D
PA=3^3&<D
<D
322PPPF=<D
P
PPPF=<D
P
323D=P
K
«1DPKD=P
K
S=P
«1D
PK
331A=3^3
K
A=3^3
K
A=P
K
A=3^3
K
A=3^3
K
A=3^3
K
A=P
K
A=3^3
K
332S=«1D
D=P
K
S=«1D
D=P
K
S=«1D
F=K
P
S=«1D
D=P
K
S=«1D
D=P
K
S=P
D=P
K
S=«1D
F=K
P
S=«1D
D=P
K
333A=«3F
K
KKF=P
K
KA=K
S=P
<2F
A=K
<2F
A=K
F=P
<2F
DADSDDDFFAFSFDFF
111PA=3^3
<2F
A=P
D=<2F&«3F
<2F
A=3^3
<2F
A=K
D=P
2^3
A=3^3
<2F
A=P
<2F
A=3^3
F=<2F&«3F
<2F
112PS=«1D
D=P
K
S=«1D
F=K
P
S=«1D
D=P
K
S=2^3&«1D
D=P
2^3
S=«1D
D=P
K
S=«1D
F=K
P
S=«1D
D=P
K
113P<D<D<DD=P
2^3&<D
<D<D<D
121PA=3^3&«1D
«1D
PA=3^3
K
A=3^3
D=P
K
A=3^3&«1D
«1D
PA=3^3
K
122PPPF=K
P
PPPF=K
P
123P<D&«1DP<DD=P
<D
<D&«1DP<D
131A=3^3&<D
<D
A=3^3&<D
<D
A=P
<D
A=3^3&<D
<D
A=3^3&<D
<D
A=3^3&<D
<D
A=P
<D
A=3^3&<D
<D
132S=<D&«1D
D=P
<D
S=<D&«1D
D=P
<D
S=<D&«1D
F=<D
P
S=<D&«1D
D=P
<D
S=<D&«1D
D=P
<D
S=<D&«1D
D=P
<D
S=<D&«1D
F=<D
P
S=<D&«1D
D=P
<D
133KKKF=P
K
KKKF=P
K
211PPPPA=K
D=P
2^3
A=3^3
K
A=P
K
A=3^3
K
212PPPPF=2^3
P
F=K
P
F=K
P
F=K
P
213PPPPD=P
2^3&<D
<D<D<D
221PPPPPPPA=3^3
K
222PD=<2F&«1D
P
A=P
S=<2F&«1D
D=<2F&«3F
F=<2F
D=<2F
P
S=«1D
D=P
K
A=«1D
D=P
<2F&«1D
D=<2F
P
A=K
S=<2F&«1D
D=P
F=<2F&«3F
223PPPPPPP<D
231PPPPA=3^3&<D
<D
A=3^3&<D
<D
A=P
<D
A=3^3&<D
<D
232PPPPF=<D
P
F=<D
P
F=<D
P
F=<D
P
233PPPPKKKF=P
K
311PA=3^3&<D
<D
A=P
<D
A=3^3&<D
<D
A=<D
D=P
2^3&<D
A=3^3&<D
<D
A=P
<D
A=3^3&<D
<D
312PS=<D&«1D
D=P
<D
S=<D&«1D
F=<D
P
S=<D&«1D
D=P
<D
S=2^3&<D&«1D
D=P
2^3&<D
S=<D&«1D
D=P
<D
S=<D&«1D
F=<D
P
S=<D&«1D
D=P
<D
313PKKKD=P
F=P
2^3
F=P
K
F=P
K
F=P
K
321PA=3^3&<D&«1D
<D&«1D
PA=3^3&<D
<D
A=3^3&<D
D=P
<D
A=3^3&<D&«1D
<D&«1D
PA=3^3&<D
<D
322PPPF=<D
P
PPPF=<D
P
323P«1DPKD=P
F=P
K
F=P
«1D
PF=P
K
331A=3^3
K
A=3^3
K
A=P
K
A=3^3
K
A=3^3
K
A=3^3
K
A=P
K
P
332S=«1D
D=P
K
S=«1D
D=P
K
S=«1D
F=K
P
S=«1D
D=P
K
S=«1D
D=P
K
S=«1D
D=P
K
S=«1D
F=K
P
P
333KA=K
<2F
A=K
D=<2F&«3F
<2F
A=K
F=P
<2F
F=P
K
A=K
F=P
<2F
A=K
F=P
<2F
P