On the Subject of Symbolic Hexabuttons

Not another stores module!

The symbols written on each button refers to a value that is assigned to that button. Find the symbol on the table below to find out which value it is:

ζ25¢32υ34Ξ2τ36β31
Γ8σ7Λ17Σ33$26Ω19
γ13ν5λ10£14ι15ω30
η23ρ1δ3Ψ24α28κ12
ξ22ε21Δ35θ18φ6π29
ο4Π9μ27x16ς1120

The number written on the center button represents N0. Pressing the center button will cause the non-center buttons to perform 6 swaps. Each swap is assigned a value of F(Nn - 1). Look up the operation used for each swap in the tables below to get the value for that swap. Each time you get a value for it, modulo it by 1000.

  • X = A + B.
  • Y = |A - B|.
  • A/B: The 2 values assigned to the buttons that swapped with each other.
2|N - X||N - X|2(N + X)
N + Y|N - 2Y||2N - Y|
|N - Y|N + 2Y|2N - X|
N + 2X2N + Y|N - 2X|
2(N + Y)N + X2N + X

Double Swaps

In the case of double swaps, take the 2 positions that didn’t swap and use the operation for it (Always round down):

TL TR|F1(N) - F2(N)| / 2TR MLF1(N) + F2(N)ML BLmin(F1(N), F2(N)) / 2
TL ML2max(F1(N), F2(N))TR MR2min(F1(N), F2(N))ML BR2(F1(N) + F2(N))
TL MR|F1(N) - F2(N)|TR BL|F1(999 - N) - F2(999 - N)|MR BL(F1(N) + F2(N)) / 2
TL BLmax(F1(N), F2(N))TR BRmax(F1(N), F2(N)) / 2MR BR999 - |F1(N) - F2(N)|
TL BR2|F1(N) - F2(N)|ML MRF1(999 - N) + F2(999 - N)BL BRmin(F1(N), F2(N))

Triple Swaps

If the triple swap is present in the list below, use function O. Otherwise use function P.

Omax(F1(N), F2(N), F3(N))
Pmin(F1(N), F2(N), F3(N))

Press the buttons in such a way that the values assigned to each of them is in the same order of the values that is assigned to each swap.

Example

Button Values: 12, 17, 20, 27, 34, 36

Swap Values: 255, 117, 288, 332, 625, 142

Value Order: 20, 12, 27, 34, 36, 17