On the Subject of Unordered Keys

No. This is not Ordered Keys.

This module consists of 6 coloured keys, each of which is labelled with a coloured number, and a black reset button.

The possible colours for both the keys and the numbers labelling them are: (R)ed, (G)reen, (B)lue, (C)yan, (M)agenta, and (Y)ellow.

Any of the numbers 1 - 6 may appear on each of the keys.

The information given by each key is used to locate a cell within a 6×6 subgrid of a 6×6 grid which will have a value in the range 1 - 6.

On this grid,

  • the row along the top refers to the colour of the key.
  • the row along the bottom refers to the label on the key.
  • the column along the left refers to the colour of the label.
  • the column along the right refers to the position of the key from left to right.

A key is valid if its corresponding value in the table is equal to the number of keys that have not been pressed.

If none of the remaining keys are valid, push the black button to reset the remaining keys.

The module is solved if-

  • all six keys have been pressed.
  • the module has been reset four times.
    (If no keys were valid after a reset, the next reset counts twice)

A strike will be issued if-

  • an invalid key is pressed.
  • the reset button is pressed when any remaining key is valid.

RGBCMY
R1346254532614362515124632465313562141
4512633241565146323261544312652413652
6253146124356253146315421536421234563
2634515316423521462453166124535641234
3125462465132415634536215243164156325
5461321653241634251642353651246325416
G4251365136422615341324563561246135421
3615426521345341266235142316453512642
2136543412566432152413654132565246133
5423612345613156425642316245131463254
1564231654231264534156231453624321565
6342154263154523613561425624312654316
B3421561256433612542345614326512351461
5162343461521463255163425163424126532
6354126142355134623426152651343642153
4635214635212546134231561432656534214
2516435324164251366514236245131465325
1243652513646325411652343514265213646
C2453613145265234164321566453121435621
4316526251432413656435213261455214362
1542361326543562413162454512632643153
6234154513626145325614321345263156244
3165242634154651232546135624316521435
5621435462311326541253642136544362516
M6451236543211526346341255416235324611
1362543215642365415432611365424261532
5213461624354132651264534123651456323
3645125361423641523615423254166132454
4526312456135413264523162631542543165
2134654132566254132156346542313615246
Y5241362365416534213412651562344236511
3125643421563621546231542416535143622
1436254256132465132543165631426351243
2563416512344153624165233245161625434
6354125134621246351654326354213462155
4612531643255312465326414123652514366
123456123456123456123456123456123456