
## On the Subject of Resistors

"It is easier to resist at the beginning than at the end." - Leonardo da Vinci, on procrastination

The module contains 2 input pins (**A** and **B**), 2 resistors, and 2 output pins (**C** and **D**). Follow the rules to make the correct connections. To make a connection, click one pin and then another. Press **CLEAR** to remove all connections.



- 1. Take the first digit of the bomb's serial number (or 0 if there are no digits). The *primary input* is **A** if even, **B** if odd.
- 2. Take the last digit of the bomb's serial number (or 0 if there are no digits). The *primary output* is **C** if even, **D** if odd.
- 3. The target resistance in  $\Omega$  is calculated as follows:
  - 1. Take the first two digits of the bomb's serial number. e.g. 2E7X19  $\rightarrow$  27, ZJ3MLN  $\rightarrow$  3, ABCDEF  $\rightarrow$  0

2. For each battery present on the bomb (up to a max of 6), multiply by 10.

4. Connect the primary input to the primary output, with the target resistance.

Note: all resistance values are checked to be within 5% accuracy.

5. If a lit FRK indicator is present, also connect the primary input to the other (secondary) output, with the target resistance.

Note: this means C and D will also be connected with some non-infinite resistance. This value is not checked as part of your solution, and so can be anything.

- 6. If step 5 did not apply and at least 1 *D* cell battery is present, connect the secondary input to the secondary output, with  $0\Omega$  resistance.
- 7. Press CHECK when finished to check the solution. All input/output pairs not mentioned should be disconnected.

Consult the following page to learn how to produce the target resistance.

## Producing resistance

An input and output can be connected via one of five paths.

- 1. No resistors,  $0\Omega$  of resistance.
- 2. Top resistor.
- 3. Bottom resistor.
- 4. Both resistors in serial.

```
i.e. input \rightarrow top resistor \rightarrow bottom resistor \rightarrow output
```

The combined resistance is the sum of the individual resistances.

## 5. Both resistors in parallel.

```
i.e. input \rightarrow top resistor, input \rightarrow bottom resistor,
```

- top resistor  $\rightarrow$  output, bottom resistor  $\rightarrow$  output
- The combined resistance is less than either of the individual resistances.

```
For the curious... it's: 1 / (1 / (top resistance) + 1 / (bottom resistance))
Don't worry, this won't be on the test!
```

## Reading resistors

t

Each resistor has a sequence of three colored bands, indicating a two-digit number and a multiplier. A fourth band indicates a tolerance value (not used). The fourth band is separated by a gap from the first three. Resistors can be rotated; take care to read the bands in the correct direction.

| Color  | First Band | Second Band | Multiplier          |
|--------|------------|-------------|---------------------|
| Black  | 0          | 0           | <b>1</b> Ω          |
| Brown  | 1          | 1 .         | <b>10</b> Ω         |
| Red    | 2          | 2           | <b>100</b> Ω        |
| Orange | 3          | 3           | <b>1,000</b> Ω      |
| Yellow | 4          | 4           | 10 <b>,</b> 000Ω    |
| Green  | 5          | 5           | 100 <b>,</b> 000Ω   |
| Blue   | 6          | 6           | <b>1,000,000</b> Ω  |
| Violet | 7          | 7           | <b>10,000,000</b> Ω |
| Gray   | 8          | 8           | -                   |
| White  | 9          | 9           | <u> </u>            |
| Gold   | -          | -           | 0.1Ω                |
| Silver |            |             | 0 <b>.01</b> Ω      |

For example, Green Violet Yellow indicates  $57 \times 10,000 \Omega = 570,000 \Omega$ .