On the Subject of the Gamepad

Oh, the layout of the buttons on this thing takes me back to my childhood! Except I didn't expect to see that on a time bomb, even. Play time is over, I suppose.

See Appendix MathConcepts: Mathematical Concepts for more information.

- Two 2-digit numbers will appear on the top LCD display. The bottom has eight keys: the input keys (◀▲▼▶AB), Return, and Backspace.
- Determine the correct command, made of two subcommands, to input, depending on the properties of the two numbers. Use the first match.
- The two numbers are notated x and y. Individual digits are notated as abcd. A number followed by n means a multiple of that number.

Global	Overrides
--------	-----------

Apply all matches after determining the two commands.

- If x = 11n, switch the first keypress with the second, and the fifth with the seventh.
- If a = 1 + d, switch the third and fourth keypresses, as well as the sixth and eighth.
- If x or y is a highly composite number, switch the order of the subcommands.
- If x and y are perfect squares, flip the entire sequence.

First Subcommand		
x is prime		
x = 12n	▲A◀◀	
a+b = 10 AND the last digit of serial number is odd	AB◀▶	
x = 6n + 3 OR x = 10n + 5	▼ ∢A▶	
$x = 7n \text{ AND } y \neq 7n$	∢ ▲B	
$x = c \times d$	A▲◀◀	
x is a perfect square	►►A▼	
x = 3n - 1 OR bomb has unlit ind. labeled SND	►AB▲	
60 ≤ x < 90 AND bomb has no batteries	ВВ▶◀	
x = 6n	ABA▶	
x = 4n	**	
else	A◀B▶	

Second Subcommand		
y is prime	4 > 4 >	
y = 8n	▼ ▶B▲	
c - d = 4 AND bomb has a Stereo RCA	►A▼▼	
y = 4n + 2 OR bomb has lit ind. labeled FRQ	B▲►A	
$y = 7n \text{ AND } x \neq 7n$	⋖⋖ ▼A	
y is a perfect square	▲ ▼B►	
y = a × b	A▲◀▼	
y = 4n - 1 OR bomb has a PS/2 port	▲BBB	
c > d AND bomb has 2 or more batteries	AA▲▼	
y = 5n	BAB◀	
y = 3n		
else	B▲A▼	

Appendix MathConcepts: Mathematical Concepts

This appendix contains a brief overview of some mathematical concepts used in the Gamepad module.

Prime Numbers

A prime number is a counting number (positive whole number) that can only be divided by 1 and itself. In other words, there is no way to share a prime number of donuts equally among any number of friends (unless you have as many friends as donuts!).

Prime numbers below 100 are: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97.

Perfect Squares

A perfect square is any whole number multiplied by itself.

Perfect squares below 100 are: 1, 4, 9, 16, 25, 36, 49, 64, 81.

Highly Composite Numbers

A highly composite number (HCN) has more divisors than any smaller positive integer. For example, 6 can be divided by 1, 2, 3, and 6, which is more than the last HCN, 4, which has 1, 2, and 4. 8 can be divided by 1, 2, 4, and 8, but a smaller number (6) has an equal number of divisors, so it is not a HCN.

Highly composite numbers below 100 are: 1, 2, 4, 6, 12, 24, 36, 48, 60.